

Symmys

Introduction

symmys is an in-development library for performing symmetry
detection and related tasks using tensorflow. Currently it attempts to
identify rotation transformations that leave a given point cloud
unchanged and distills these rotations into a set of n-fold symmetric
axes.

Documentation

Browse more detailed documentation
online [https://symmys.readthedocs.io] or build the sphinx
documentation from source:

git clone https://github.com/klarh/symmys
cd symmys/doc
pip install -r requirements.txt
make html

Contents

	Optimization

	Losses

	Layers

Indices and tables

	Index

	Module Index

	Search Page

Optimization

	
class symmys.optimization.PointRotations(num_rotations, quaternion_dim=8, include_inversions=True, loss=<function mean_exp_rsq>)

	Finds rotations that leave a point cloud unchanged up to a permutation.

This method optimizes a set of unit quaternions to match the
distribution of transformed points to the set of unrotated
points. Quaternions are then clustered by their axis of rotation
and merged into N-fold rotation symmetries.

	Parameters

	
	num_rotations – Number of plain rotations (and rotoinversions, if enabled) to consider

	quaternion_dim – Optimizer dimension for quaternions (higher may make optimization easier at the cost of more expensive optimization steps)

	include_inversions – If True, include rotoinversions as well as rotations

	loss – Loss function to use; see symmys.losses

	
build_model()

	Create the tensorflow model.

This method can be replaced by child classes to experiment
with different network architectures. The returned result
should be a dictionary containing at least:

	model: a tensorflow.keras.models.Model instance that replicates a given set of input points

	rotation_layer: a layer with a quaternions attribute to be read

	rotoinversion_layer (if inversions are enabled): a layer with a quaternions attribute to be read

	
fit(points, epochs=1024, early_stopping_steps=16, validation_split=0.3, hash_sample_N=128, reference_fraction=0.1, optimizer='adam', batch_size=256, valid_symmetries=12, extra_callbacks=[])

	Fit rotation quaternions and analyze the collective symmetries of a set of input points.

This method builds a rotation model, fits it to the given
data, and groups the found quaternions by their axis and
rotation angle.

After fitting, a map of symmetries will be returned: a
dictionary of {N-fold: [axes]} containing all the axes about
which each observed symmetry were found.

	Parameters

	
	points – Input points to analyze:: (N, 3) numpy array-like sequence

	epochs – Maximum number of epochs to train

	early_stopping_steps – Patience (in epochs) for early stopping criterion; training halts when the validation set loss does not improve for this many epochs

	validation_split – Fraction of training data to use for calculating validation loss

	hash_sample_N – Minimum number of points to use as reference data for the loss function (see hash_sample())

	reference_fraction – Fraction of given input data to be hashed to form the reference data

	optimizer – Tensorflow/keras optimizer name or instance

	batch_size – Batch size for optimization

	valid_symmetries – Maximum degree of symmetry (N) that will be considered when identifying N-fold rotations

	extra_callbacks – Additional tensorflow callbacks to use during optimization

	
model

	Return the tensorflow model that will perform rotations.

	
rotation_layer

	Return the tensorflow.keras layer for rotations.

	
rotoinversion_layer

	Return the tensorflow.keras layer for rotoinversions.

Losses

	
symmys.losses.mean_exp_rsq(pred, reference, r_scale=1.0)

	Returns mean(1 - exp(-R^2/r_scale^2)) for a set of reference points.

	
symmys.losses.mean_sqrt_rsq(pred, reference)

	Returns mean(sqrt(R^2)) for a set of reference points.

Layers

	
class symmys.layers.QuaternionRotation(num_rotations, quaternion_dim=6, include_reverse=True, *args, **kwargs)

	Perform rotations of a set of input points, parameterized by unit quaternions.

This layer takes a point cloud as input and produces rotated
images of all the points in the point cloud. The rotations that
are applied are parameterized by unit quaternions, which are
treated as layer weights to be optimized.

Quaternions are optimized in a higher dimension and then projected
down through a sum operation to improve the speed of the
optimization process.

	Parameters

	
	num_rotations – Number of rotation quaternions to use

	quaternion_dim – Pre-projection dimension of quaternion parameters

	include_reverse – If True, also output points rotated by the conjugate quaternion for each learned quaternion

	
class symmys.layers.QuaternionRotoinversion(num_rotations, quaternion_dim=6, include_reverse=True, *args, **kwargs)

	Learn rotoinversions, rather than rotations. Otherwise identical to QuaternionRotation.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 symmys	

 	
 	
 symmys.layers	

 	
 	
 symmys.losses	

 	
 	
 symmys.optimization	

Index

 B
 | F
 | M
 | P
 | Q
 | R
 | S

B

 	
 	build_model() (symmys.optimization.PointRotations method)

F

 	
 	fit() (symmys.optimization.PointRotations method)

M

 	
 	mean_exp_rsq() (in module symmys.losses)

 	
 	mean_sqrt_rsq() (in module symmys.losses)

 	model (symmys.optimization.PointRotations attribute)

P

 	
 	PointRotations (class in symmys.optimization)

Q

 	
 	QuaternionRotation (class in symmys.layers)

 	
 	QuaternionRotoinversion (class in symmys.layers)

R

 	
 	rotation_layer (symmys.optimization.PointRotations attribute)

 	
 	rotoinversion_layer (symmys.optimization.PointRotations attribute)

S

 	
 	symmys.layers (module)

 	
 	symmys.losses (module)

 	symmys.optimization (module)

 nav.xhtml

 Table of Contents

 		
 Symmys

 		
 Optimization

 		
 Losses

 		
 Layers

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

